
A Graph-based Push Service Platform

Huifeng Guo1⋆, Ruiming Tang2, Yunming Ye1⋆⋆, Zhenguo Li2, and Xiuqiang He2

1 Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen, China
huifengguo@yeah.net, yeyunming@hit.edu.cn

2 Noah’s Ark Lab, Huawei, China
{tangruiming, li.zhenguo, hexiuqiang}@huawei.com

Abstract. Learning users’ preference and making recommendations is
critical in information-exploded environment. There are two typical modes
for recommendation, known as pull and push, which respectively account
for recommendation inside and outside the item market. While previously
most recommender systems adopt only pull-mode, push-mode becomes
popular in today’s mobile environment. This paper presents a push
recommendation platform successfully deployed for Huawei App Store,
which has reached 0.3 billion registered users and 1.2 million Apps by
2016. Among the various modules in developing this push platform, we
recognized the task of target user group discovery to be most essential in
terms of CTR. We explored various algorithmic choices for mining target
user group, and highlighted one based on recent advance in graph mining,
the Partially Absorbing Random Walk [13], which leads to substantial
improvement for our push recommendation, compared to the state-of-
the-art including the popular PageRank. We also covered our practice in
deploying our push platform in both single server and distributed cluster.

Keywords: Partially Absorbing Random Walk, Push Recommendation

1 Introduction

With the rapid development of the Internet and mobile devices, our daily life
connects closely to online services, such as online shopping, online news and videos,
online social networks, and many more. In such highly dynamic, information-
exploded environment, it is crucial to learn the preference of users and make
recommendations accordingly.

Recommendation often comes in one of the two modes, the pull-mode and
push-mode. The pull-mode recommends items to users after users enter the item
market. The push-mode pushes items to users proactively before the users enter
the item market. Compared to pull recommendation, push recommendation can
offer two unique advantages: to rebuild connection with users for the service
provider and to enhance experience for the users – a user can be informed of
relevant items anytime, without entering the item market. Unlike pull-mode that
⋆ The work is done when Huifeng Guo works as an intern in Noah’s Ark Lab, Huawei.

⋆⋆ Corresponding author.

selects items for all users who are visiting the item market, the key in push
recommendation is to identify a relatively small set of potential users for a given
set of items. Unfortunately, techniques developed for pull recommendation such
as matrix factorization are no longer suitable for the push-mode scenario, due to
the following “cold-start” challenges: 1) the items to be pushed are usually new,
with limited information available; and 2) “semi-active” and “inactive” users3

rarely interact with the item market, and therefore not much of their information
is available. While pull recommendation has been studied extensively, push
recommendation is a new research area, especially to the academic community.
In this paper, we present a Push Service Platform for Huawei App Store, one of
the most large-scale and influential App markets in the world.

(a) Push message (b) Book listening (c) Music (d) Photo editor

Fig. 1: Push Services for Huawei App Store

Figure 1 shows three push activities in Huawei App Store, book listening,
music, and photo editor. Through the messages from the notification center
(Figure 1a), semi-active or inactive users are well informed of potentially relevant
Apps without entering Huawei App Store. They can download their favorite Apps
in the display pages by just clicking on the push message (Figures 1b, 1c, 1d).
Behind such convenience in connecting services to users, what is the key enabling
technology?

During our extensive practice in establishing the push service for Huawei App
Store, we found that identifying the right users to target is the most challenging
task because too many unrelated messages could disturb users and degrade the
experience. Another challenge comes from the large scale of the problem. With
the versatility of smart phone and various needs from our daily life, a large
number of Apps are being created by developers and installed by users. In Huawei
App Store, there are 0.3 billion registered users and 1.2 million Apps by 2016.
For a service (App) to be push, how to identify the users of interest from such
a web-scale user pool? Especially, on average based on our statistics, for each

3 In Application Market, “active users” refers to the users who visit frequently, “inactive users” are
those who do not visit recently, and “semi-active users” are those who do not visit often recently.

service, there are less than 1% of the population relevant to the service, making
the target user discovery extremely difficult.

In response to these practical challenges, we have established a Push Service
Platform (PSP) for Huawei App Store, which mainly consists of three layers: dis-
tributed storage layer, application layer, and evaluation layer. The contributions
of this paper are summarized as follows:

– We present a Push Service Platform for Huawei App Store. Particularly, we
identify the target user discovery problem as the most significant task for
the push service.

– We carefully compare different choices of algorithms for mining target user
group, and highlight in details one based on recent advance in graph mining,
namely Partially Absorbing Random Walk [13], which has been adopted by
our push service. Particularly, we propose and implement an approximate
partially absorbing random walk algorithm (A-PARW) for both single server
and distributed cluster that can support very large-scale problems and can
efficiently respond to a multitude of push services simultaneously.

– We conduct off-line and on-line experiments in Huawei App Store which
shows that A-PARW leads to more than 27% and 16% improvement in online
CTR and DTR, compared to the predecessor [7], which uses Personalized
PageRank4 in discovering target users.

In what follows, we present the full details of Huawei PSP. We first overview PSP
in Section 2. Then we give the work flow of the Application Layer and presents
the motivation, principle and implementation of A-PARW in Section 3. After
that, we apply our system on several real marketing tasks in Huawei App Store,
and carry out detailed off-line and on-line evaluation in Section 4. Finally, we
discuss some related works in Section 5 and conclude the paper in Section 6.

2 Platform Overview

The architecture of Huawei Push Service Platform (PSP) is shown in Figure 2,
and includes Distributed Storage Layer, Application Layer, and Evaluation Layer.

The Distributed Storage Layer maintains two database systems for historical
data storage and on-line caching. The HDFS (short for Hadoop Distributed File
System) stores historical data, including users’ download, click, and payment log
data, which is the source data for our User-App bipartite graph (discussed later).
The HBase (short for Hadoop Database) caches on-line data and users’ feedback,
which is critical for on-line monitoring and algorithm evaluation, and updates
the historical data in HDFS periodically. In addition, this layer incorporates a
Hadoop cluster to store large-scale datasets and provides parallel data processing.

The Application Layer consist of the major components (i.e., off-line target
users mining and on-line pushing) of the platform. For different demands in
practice, the Application Layer supports different Computing Engines, including
4 xRank, proposed in [7], is exactly Personalized PageRank (PPR) and is equivalent to the D mode

of PARW. More details are presented in [3].

Fig. 2: PSP Architecture

graph engine and distributed computing engine. We will give more details of
the Application Layer in Section 3 as it is the most challenging and important
constituent of our platform.

The Evaluation Layer evaluates both off-line and on-line results. Off-line eval-
uation compares pre-defined off-line metrics of the results by different algorithms,
which helps us to tune the parameters of the algorithms. On-line evaluation, such
as A/B test, compares the performance of the algorithms which are carefully
selected by off-line evaluation. The details of evaluation methods and metrics
will be presented in Section 4.1.

3 Application Layer

The Application Layer of our PSP can be described as the following work flow:

History Data P re−processing−−−−−−−−−−−−−→
Graph Construction

User-APP Graph Graph Mining−−−−−−−−−−→ Target User

List User F iltering−−−−−−−−−−→ User List On−line P ushing−−−−−−−−−−−−→
Observation

User Feedback Logging−−−−−→ Online

Log Updating pediodly−−−−−−−−−−−−→ Historical Data.

The input of PSP is a topic push activity, which is denoted as seed Apps5

under a certain topic, such as music fans, cook lovers, etc. As an initial step, we
provide Data Preprocessing and Graph Construction operation (Section 3.1) to
generate User-App graph from users’ download/click/payment historical data,
5 Seed Apps are a small set of manually-labeled Apps.

which is stored in HDFS. Based on this graph, we can mine target user group
through A-PARW (Section 3.2). Then, according to some domain knowledge and
rules, User Filtering filters irrelevant users to obtain the final user list (Section 3.3)
and the module of Push Service (Section 3.4) sends the message to the selected
users. After that, PSP will cache the users’ feedback data and update these
data to History data periodically. We will review various computing engines in
supporting needs in this layer in Section 3.5.

In the rest of this section, we introduce the details of Application Layer
according to the work flow briefly described above.

3.1 Data Preprocessing and Modeling

On server log data, the first step in the Application Layer includes two modules,
Data Preprocessing and Graph Construction.
Data Preprocessing: PSP can set a series of rules according to demands, such
as removing pre-installed or very popular Apps from raw data before graph
construction, because installing such Apps will not reflect users’ interests.
Graph Construction: In this module, PSP constructs an undirected graph
G = (U , A, ξ) based on the preprocessed data, where U denotes the set of users
vertices, A is the set of Apps vertices, and ξ is the set of edges. Since we only
use historical information to record the interaction between users and Apps, the
constructed graph G is a bipartite graph. For instance, in Figure 3, User vertices
are on the left-hand-side and App vertices are on the right-hand-side. There
exists an edge connecting Ui and Ai if user Ui installs App Ai. For example from
Figure 3, U1 installs three Apps A1, A2 and A3.

Fig. 3: An example User-App bipartite graph and A-PARW-I vs PPR running case

In addition, we assign uniform IDs to vertices in A and U . More specifically,
vertices in U are assigned with IDs from 1 to |U|, and vertices in A are assigned
from |U| + 1 to |U| + |A|. For simplicity, we use vi to denote vertex with ID
i. For example, we use v1 to v3 to denote U1 to U3 and v4 to v8 to denote
A1 to A5 respectively. We denote the adjacency matrix of G as W, let D =
diag(d1, d2, ..., dN) with di =

∑
j wij as the degree of vertex i, and define the

Laplacian of G as L = D − W.
In some push scenarios, such as online news recommendation, the graph has

to be updated frequently as the hot spots are changing at any time. While in

some other scenarios, such as the recommendation in application market like
the one considered in this paper, the graph does not need to be updated so
frequently because the interest of a user is unlikely to vary much from time to
time. Hence, in our application scenario, we re-construct graph weekly with the
most up-to-date information, which usually takes a few hours.

3.2 User Discovery via Graph Mining

After preprocessing, the most significant task for the push service is the problem
of target user discovery. In this subsection, we carefully compare different choices.

As it is expensive to manually label all Apps and the result has no ranking
information, the predecessor of PSP [7] applied PPR to mine target user group
from some seed Apps. However, in our practice, PPR favors active users with
high degree, who will download Apps with high probability no matter receiving
push messages or not, and is likely to ignore the majority of inactive and semi-
active users. Therefore, we need an algorithm that can mine relevant inactive
and semi-active users. Below, we present the approximate Partially Absorbing
Random Walk algorithm, A-PARW, which we found quite effective in mining
target users from the seed Apps and has been adopted in our PSP push platform
for Huawei App Store. (Due to space limit, the details are presented in [3].)
A-PARW: To mine target user group from a small number (e.g., 10) of seed Apps,
we propose A-PARW by extending Partially Absorbing Random Walk (PARW)
[13] for billion scale problems encountered in Huawei App Store. The formulation
of PARW is R⊤ = (In)⊤ · (Λ + L)−1 · Λ, where R is the rank score vector,
Λ = diag(λ1, λ2, ..., λN) is a diagonal matrix with λ1, λ2, ..., λN being arbitrary
non-negative numbers, and In is a vector of In(v) with In(v) = 1/|seed Apps| if
v ∈ seed Apps and 0 otherwise.

In PARW, a random walk is absorbed at state i with probability pi, and is
transferred via a random edge of state i with probability 1−pi. It is proved in [13]
that a random walk starting from a set of low conductance vertices (referred as
SP) is most likely absorbed in SP if Λ = α · I (PARW-I), I is an identity matrix
and α is a small positive value. One property of PARW-I is that the absorption
probability varies slowly within SP , and drops sharply outside SP . This property
suggests that PARW-I can effectively capture the underlying community structure
of the graph.

As Figure 3 shows, low degree yet relevant vertex v2 (the user represented by
v2 only installs A2 (vertex v5), which means he is more interested in A2) absorbs
higher score than v3, which has high degree but with no deterministic preference,
for A-PARW-I. In contrast, v2 could not get good score for PPR. (Due to space
limit, the details are presented in [3]).

However, to the best of our knowledge, there is no scalable implementation
of PARW. Therefore we propose A-PARW in Algorithm 1 motivated by [1].
Our algorithm maintains a pair of vectors run and dry, starting with dry = 0
and run = In (Line 1), then applies a series of push operations which transfer
probabilities from run to dry while keeping no transfer out of dry. At vertex vi, a
push operation transfers λi/(λi +di) fraction of runi to dryi (Line 3), then evenly

Algorithm 1 dry=A-PARW(s, Λ, γ) ◃ approximate algorithm of parw
Input: S: seeds, Λ = {λ1, λ2, ..., λn}: regularization parameter, γ: tolerance threshold
Output: A-PARW vector dry
1: Initialize dry = 0 and run = {(s, 1/|S|)}
2: while run is not empty do
3: pop a queue run element (i, w) and dryi = dryi + λi

λi+di
· w

4: if w > γ · di then
5: for all links (i, j) ∈ ξ do
6: if pair (j, s) ∈ run then
7: s = s + w

λi+di

8: else
9: add a new pair (j, w

λi+di
) to run

10: end if
11: end for
12: end if
13: end while

distributes the remaining di/(λi + di) fraction of runi to vi’s neighbours (Line
5-11). We can control the precision through a strategy that A-PARW performs
push operations only when runi ≥ γ · di (Line 4). As a result, we set γ to be 10−8

and select a limited number of iterations (i.e., 20) as A-PARW-I’s stop condition.
It is demonstrated to be good enough in our scenario.

3.3 Filtering Rule
In pratice, the target user list, mined through A-PARW, includes some users who
are not suitable to send push messages. Therefore we can define some practical
filtering rules to filter them out. For instance, we should not select users who
have turned off the function of receiving push messages, or we may not want to
send messages to the users who visit Huawei App Store every day, etc.

3.4 On-line Pushing
First of all, the module of Push Service will deliver messages as an alert on the
notification center to the selected users’ phone, whose push service is enabled and
which is connected to the Internet. After that, these users will receive messages
in their phone as shown in Figure 1a, and may choose to neglect it or click on.
After clicking this message, users will enter the specific page of Huawei App Store
or even download the Apps contained in this page. For example, when a music
fan receives an alert about music Apps on her phone’s notification center (e.g.,
as the second message shown in Figure 1a), she takes a look at music Apps in
the display page (e.g., as in Figure 1c), after clicking the alert message. In the
end, we utilize user’s feedback to generate market strategies and filtering rules.
For example, we are more likely to send a message of a music-like activity to a
user who has clicked the music push activity before, and we are less likely to
send a push message to a user who has never clicked any push message before.

3.5 Computing Engine
As presented in Section 3.1 to Section 3.4, there are two kinds of computing tasks
in the Application Layer, raw data extraction and graph mining. The former is easy

to parallelize while the latter is diffcult due to the heavy dependencies between
vertices in a graph. Therefore, we choose MapReduce as general computing engine,
but use graph engines, including VENUS [10] and PowerGraph [2], for graph
mining. Specifically, we use a disk-based system–VENUS when push activity
is not so urgent and the memory is limited; and we choose a memory-based
distributed system–PowerGraph when push activity is highly urgent and resource
is enough.

Table 1: Running Time (in seconds) of A-PARW-I on PowerGraph and VENUS

No. of push activities 1 10 100
PowerGraph 6.79 13.19 46.69

VENUS 2307.00 22588.90 N.A.

In order to compare the efficiency of VENUS and PowerGraph, we ran exper-
iments on twitter-graph [8], which contains 41,652,230 vertices and 1,468,364,884
edges. To compare fairly, the experiments are conducted on the same machine
and the parameters are set to be the same as stated in the previous section.
As Table 1 presents, PowerGraph needs only 6.79 seconds to process one push
activity, while VENUS needs around 40 minutes. For 10 and 100 push tasks,
PowerGraph uses around 13 seconds and less than 50 seconds respectively. While
VENUS has to run more than 6 hours when pushing 10 tasks. We don’t test the
case of pushing 100 tasks on VENUS as it needs several days to get the precise
timing. But it’s easy to estimate the time since it runs these tasks one by one.

4 Experimental Results

In this section, we first describe the data sets and evaluation metrics that are used
in our experiments. Then, we compare the experimental results of A-PARW-I
and PPR on real data set. Moreover, the details of experimental results on public
data set are presented in [3] due to the space limit.

4.1 Data Set Description and Experiment Setting

We evaluated A-PARW algorithms on two data sets, MovieLens 6 and APPData,
where APPData is collected from Huawei App Store. The difference between
A-PARW-I and PPR is verified on both data sets, while evaluation on the real-life
data sets furthermore confirmed the remarkable effectiveness of A-PARW-I.

Real-Life Dataset and Experiment Setting We performed experiments on
real data set–APPData. It is the complete user downloading log from 2015/03/01
to 2015/08/31 in Huawei App Store, and includes 96,324,654 users, 487,649 Apps,
and 1,778,160,959 edges.

We first conducted experiments to evaluate the effectiveness of A-PARW-I,
and then we verify the property of A-PARW-I and PPR. Our experiments on
APPData include both off-line and on-line evaluation.

6 http://grouplens.org/datasets/movielens/

http://grouplens.org/datasets/movielens/

For off-line evaluation purpose, we collected users’ feedback of nine push
activities from Huawei App Store, for which the selected user lists were gener-
ated by PPR. The nine push activities are: 1:music; 2:camera; 3:instrument;
4:ticket; 5:listen book; 6:travel; 7:goodnight; 8:read; 9:internet. We re-
ferred the users’ feedback as the ground truth to compare the effectiveness of
PPR and A-PARW-I. After receiving a push message of Apps, an interested user
may click on it or even download this Apps. Therefore, we can distinguish the
cases of click (or download) as follows: we refer a sample that the user clicked
(or downloaded) the push message as positive, and the opposite case as negative.
We ran PPR and A-PARW-I on APPData, and got top 1 million users as well as
their ranking scores, respectively. In the off-line experiment, we adopt AUC as
the evaluation metric.

In the on-line evaluation, we sent push messages to the same number of top
users ranked by A-PARW-I and PPR, respectively. Making sure to receive the
feedback from the majority of the users after two days, we compared the number
of users who clicked (or downloaded) the recommended Apps, across the two
sets of users picked by the two algorithms. We use CTR (click-through ratio) [7]
and also DTR (download-through ratio) as the online evaluation metrics, where
CTR = |Users who clicked advertised app|/|Users who received ads| and
DTR = |Users who downloaded advertised apps|/|Users who received ads|.

Public Dataset As we discussed in Section 3, A-PARW-I is able to identify
more semi-active users than PPR because it capitalizes on community structure.
In order to verify this property, we ran PPR, A-PARW-I on MovieLens data set
and compared degree trends of their ranking lists. The results implied PPR favors
high degree vertices and ignores the semi-active users. In contrast, A-PARW-I
can discover semi-active users. Due to space limit, the details are presented in [3].

4.2 Evaluation on Real-Life Data set

Off-line Evaluation In off-line experiment, we used AUC to compare the
ranking accuracy of A-PARW-I’s and PPR’s result list (we get top 1 million users
from their result list). Table 2 presents click and download AUC improvement of
A-PARW-I over PPR on the 9 push activities. As we can see, the performance
of A-PARW-I is better than PPR at all the 9 push activities, on both click and
download cases. Moreover, the improvement of A-PARW-I over PPR is more
significant on download case. The improvement of A-PARW-I comes from the fact
that A-PARW-I pays more attention to graph community information while PPR
tends to high degree nodes. It means that A-PARW-I could find more semi-active
user-nodes, which are of low degree but highly relevant to push activities.

On-line Evaluation In this subsection, we performed A-PARW-I and PPR
algorithms on two different on-line push activities through Huawei’s push service.
Two lists of users are obtained by the two algorithms respectively, and the activity

messages are push to these users 7. Interested users may click the message to see
the details of the Apps or perform further actions.

We calculated CTR and DTR from the log data of user feedbacks. For
comparison, we define CTR+ and DTR+ as the improvement of A-PARW-I over
PPR. As we can see in Table 3, the performance of A-PARW-I is significantly
higher than PPR for both click and download on the two online push activities.

Table 2: Off-line improvement of A-PARW-I over PPR in 9 different push activities
1 2 3 4 5 6 7 8 9

Click AUC+ 6.5% 10.9% 4.8% 3.1% 6.0% 37.7% 31.1% 39.9% 11.8%
Download AUC+ 7.6% 10.9% 7.9% 9.2% 3.4% 12.0% 8.3% 12.4% 5.4%

Table 3: On-line improvement of A-PARW-I over PPR
ticket music

CT R+ 27% 82%
DT R+ 16% 85%

Property of PARW In order to analyse the property of A-PARW-I and PPR,
we study the tendency of CTR/DTR and the degree of the user vertices selected
by the two algorithms and sorted by their scores.

Tendency of CTR/DTR in sorted-steady-distribution. Figure 4a (4b)
and Figure 4c (4d) represent tendency of activity ticket’s (music’s) CTR and
DTR. In the figures, x-axis is the bucket identifier (each bucket includes 100,000
users) and y-axis is the CTR (respectively DTR) of the buckets. As we see, the
curves of PPR and A-PARW-I have high CTR and DTR value at the beginning.
However, PPR’s curve drops more dramatically than A-PARW-I’s; moreover,
PPR’s CTR and DTR sometimes increase at the tail of the curve. So A-PARW-I,
which is steady and stable, selects the users who are more relevant to the push
activity than PPR.

Change of degree in sorted-steady-distribution. Figure 5a (5b) presents
the degree’s tendency of A-PARW-I and PPR in the activity of ticket (music),
where x-axis is same as Figure 4 and y-axis is the total degree of the users in
the buckets. As we see, the tendency of both red and blue curves are similar
across the two figures. The PPR’s curve is higher than the A-PARW-I’s at first
but drops rapidly and A-PARW-I’s curve is more smooth and steady. It can be
concluded from these two figures that PPR prefers high degree nodes.

5 Related Work

Compared to pull-mode, which gives recommendations to user within item market,
push-mode pushes specific messages to users according to their characteristics
even when users are not in item market. So push recommendation is able to
rebuild or strengthen the connection between item market and users.
7 Duplicated users in the two lists are only push the message once.

(a) CTR tendency of activity ticket (b) CTR tendency of activity music

(c) DTR tendency of activity ticket (d) DTR tendency of activity music
Fig. 4: Tendency of CT R/DT R

The crucial part of push-mode is target user group discovery, which can be
solved by rule-based [5], CF-based [12] and graph-based [7,9] approaches. However,
the rule-based methods can not take advantage of collaborative information
among users, because it needs a set of rules that are defined so that the accuracy
rate is low and not flexible enough. The CF-based methods tend to be ineffective
in real-world scenarios because it requires a great deal of interactions of users and
tags, which is problematic due to the sparsity of data. In graph-based approach,
PageRank [11] is a well-known link analysis algorithm used by Google to rank
websites according to their importance. There are many variants of PageRank,
such as sensitive PageRank [6], xRank [7], and WTF [4]. However, PageRank
based approach is biased to high-degree vertices. The authors of [13] propose
a unified framework of graph mining and a new algorithm PARW-I, which can

(a) Ticket (b) Music
Fig. 5: Tendency of users’ degree

capture the community structure to overcome the weakness of PageRank. So we
design approximate PARW, namely A-PARW, in our system.

6 Conclusions and Future Works

In this paper, we introduced Huawei Push Service Platform (PSP) to perform push
recommendation by selecting target user group for a given push message. PSP
includes potential users mining, online pushing, feedback caching and evaluation.
In addition, we proposed A-PARW for target user group discovery on large
scale data and presented a detail analysis among different choices of algorithms
theoretically and empirically. We highlighted that A-PARW-I is able to discover
the most relevant potential users and improve the performance of push service.
As a live system, PSP supports the push recommendation in Huawei App Store
and leads to a significant improvement over PPR.
Acknowledgement. This research was supported in part by NSFC under
Grant No.61572158 and Shenzhen Science and Technology Program under Grant
No.JCYJ20160330163900579. We thank Dr. Qin Liu, Dr. Junbo Zhang and
Chenzi Zhang for the help in scaling up PARW. We also thank Dr. Zhenhua
Dong, Zhirong Liu and Benwei Gong for the valuable discussion and feedback.

References
1. Andersen, R., Chung, F., Lang, K.: Local graph partitioning using pagerank vectors.

In: FOCS (2006)
2. Gonzalez, J.E., Low, Y., Gu, H., Bickson, D., Guestrin, C.: Powergraph: Distributed

graph-parallel computation on natural graphs. In: OSDI (2012)
3. Guo, H., Tang, R., Ye, Y., Li, Z., He, X.: A graph-based push service platform.

https://arxiv.org/abs/1611.09496 (2016)
4. Gupta, P., Goel, A., Lin, J., Sharma, A., Wang, D., Zadeh, R.: Wtf: The who to

follow service at twitter. In: WWW (2013)
5. Han, J., Pei, J., Kamber, M.: Data mining: concepts and techniques. Elsevier (2011)
6. Haveliwala, T.H.: Topic-sensitive pagerank. In: WWW (2002)
7. He, X., Dai, W., Cao, G., Tang, R., Yuan, M., Yang, Q.: Mining target users for

online marketing based on app store data. In: IEEE International Conference on
Big Data (2015)

8. Kwak, H., Lee, C., Park, H., Moon, S.: What is twitter, a social network or a news
media? In: WWW (2010)

9. Li, X., Wang, Y.Y., Acero, A.: Learning query intent from regularized click graphs.
In: Proceedings of the 31st annual international ACM SIGIR conference on Research
and development in information retrieval (2008)

10. Liu, Q., Cheng, J., Li, Z., Lui, J.: VENUS: A System for Streamlined Graph
Computation on a Single PC. TKDE (2016)

11. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking:
bringing order to the web. In: WWW (1999)

12. Su, X., Khoshgoftaar, T.M.: A survey of collaborative filtering techniques. Advances
in artificial intelligence (2009)

13. Wu, X.M., Li, Z., So, A.M., Wright, J., Chang, S.F.: Learning with partially
absorbing random walks. In: NIPS (2012)

